Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone.

نویسندگان

  • M El Khattabi
  • P Van Gelder
  • W Bitter
  • J Tommassen
چکیده

Most lipases of Gram-negative bacteria require a lipase-specific foldase (Lif) in order to fold in the periplasm into their active, protease-resistant conformation prior to their secretion. The periplasmic domain of the Lif (amino acids 44-353) of Burkholderia glumae was purified as a His-tagged protein, and its function in the folding of lipase was studied in vitro. Refolding of the denatured lipase into its active conformation was dependent on the presence of the Lif. Circular dichroism revealed that the lipase refolded in the absence of Lif into a form with a native-like conformation, which was more stable against heat-induced denaturation than the native form, but was enzymatically inactive. This form of the protein could be activated by adding Lif after several hours, which demonstrates that the function of this chaperone is to help lipase to overcome an energetic barrier in the productive folding pathway rather than to prevent it from entering a non-productive pathway. The Lif was shown to interact with the native lipase in protease-protection experiments as well as by affinity chromatography, consistent with a role of the Lif late in the folding process. These results demonstrate that the Lif functions in a way analogous to the propeptides of many bacterial proteases and indicate that the amino acid sequence of the lipase does not contain all the information required for the protein to adopt its three-dimensional structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoding the Folding of Burkholderia glumae Lipase: Folding Intermediates En Route to Kinetic Stability

The lipase produced by Burkholderia glumae folds spontaneously into an inactive near-native state and requires a periplasmic chaperone to reach its final active and secretion-competent fold. The B. glumae lipase-specific foldase (Lif) is classified as a member of the steric-chaperone family of which the propeptides of α-lytic protease and subtilisin are the best known representatives. Steric ch...

متن کامل

Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs

BACKGROUND Lipases including the lipase from Burkholderia cepacia are in a main focus in biotechnology research since many years because of their manifold possibilities for application in industrial processes. The application of Burkholderia cepacia lipase for these processes appears complicated because of the need for support by a chaperone, the lipase specific foldase. Purification and recons...

متن کامل

Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice.

Burkholderia glumae is an emerging rice pathogen in several areas around the world. Closely related Burkholderia species are important opportunistic human pathogens for specific groups of patients, such as patients with cystic fibrosis and patients with chronic granulomatous disease. Here we report that the first clinical isolate of B. glumae, strain AU6208, has retained its capability to be ve...

متن کامل

BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS Mutations improving production and secretion of extracellular lipase by Burkholderia glumae PG1

Burkholderia glumae is a Gram-negative phytopathogenic bacterium known as the causative agent of rice panicle blight. Strain B. glumae PG1 is used for the production of a biotechnologically relevant lipase, which is secreted into the culture supernatant via a type II secretion pathway. We have comparatively analyzed the genome sequences of B. glumae PG1 wild type and a lipase overproducing stra...

متن کامل

Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms.

Burkholderia glumae strain PG1 produces a lipase of biotechnological relevance. Lipase production by this strain and its derivative LU8093, which was obtained through classical strain improvement, was investigated under different conditions. When 10% hexadecane was included in the growth medium, lipolytic activity in both strains could be increased approximately 7-fold after 24 h of growth. Hex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 35  شماره 

صفحات  -

تاریخ انتشار 2000